Clinical Laboratory Mathematics

Mark D. Ball

ELIZABETH A. GOCKEL-BLESSING, SERIES EDITOR

Clinical Laboratory Mathematics

Mark D. Ball, Ph.D., SC(ASCP) CM

Specialty Chemistry Development Coordinator
Pathology Laboratories
Northwestern Memorial Hospital
Chicago, Illinois

Publisher: Julie Levin Alexander
Publisher's Assistant: Regina Bruno
Editor-in-Chief: Marlene McHugh Pratt
Executive Editor: John Goucher
Editorial Project Manager: Melissa Kerian
Editorial Assistant: Erica Viviani
Development Editor: Joanna Cain, Auctorial Pursuits
Director of Marketing: David Gesell
Executive Marketing Manager: Katrin Beacom
Marketing Coordinator: Alicia Wozniak
Senior Managing Editor: Patrick Walsh
Project Manager: Patricia Gutierrez
Senior Operations Supervisor: Lisa McDowell

Senior Art Director: Mary Siener
Text design: Candace Rowley
Cover design: Carly Schnur
Cover Art: Cover Art and Chapter Opener image bioraven Shutterstock.com

Media Producer: Amy Peltier
Lead Media Project Manager: Lorena Cerisano
Full-Service Project Management: Patty Donovan, Laserwords, Inc
Composition: Laserwords, Inc.
Printer/Binder: Courier Kendallville
Cover Printer: Lehigh-Phoenix Color/Hagerstown
Text Font: Minion Pro Display 10/12

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on the appropriate page within text.

Copyright © 2014 by Pearson Education, Inc. All rights reserved. Manufactured in the United States of America. This publication is protected by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to 201-236-3290.

Notice: The author and the publisher of this volume have taken care that the information and technical recommendations contained herein are based on research and expert consultation, and are accurate and compatible with the standards generally accepted at the time of publication. Nevertheless, as new information becomes available, changes in clinical and technical practices become necessary. The reader is advised to carefully consult manufacturers' instructions and information material for all supplies and equipment before use, and to consult with a health care professional as necessary. This advice is especially important when using new supplies or equipment for clinical purposes. The authors and publisher disclaim all responsibility for any liability, loss, injury, or damage incurred as a consequence, directly or indirectly, of the use and application of any of the contents of this volume.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data Ball, Mark D

Clinical laboratory mathematics / Mark D. Ball.-1st ed. p.;cm. - (Pearson clinical laboratory science series)

Includes index.
ISBN-13: 978-0-13-234437-1
ISBN-10: 0-13-234437-8
I. Title. II. Series: Pearson clinical laboratory science series.
[DNLM: 1. Clinical Laboratory Techniques--methods--Problems and Exercises. 2. Mathematics--methods--Problems and Exercises. 3. Problem Solving--Problems and Exercises. QY 18.2]
610.72'4--dc23

PEARSON

Contents

Foreword vii
Preface vili
Reviewers ix
CHAPTER 1 ARITHMETIC AND ALGEBRA 1
Addition 2
Subtraction 3
Multiplication 4
Division 5
Fractions 6
Percentages 12
Algebra 15
Ratios 20
Appendix Mind Over Calculator: A Few Tips for Calculating Without Electronics 27
CHAPTER 2 EXPONENTIAL NOTATION AND LOGARITHMS 35
Exponents and Logarithms 36
Negative Exponents 37
Exponential Notation (Scientific Notation) 37
Algebraic Rules for Exponents 39
Algebraic Rules for Logarithms 39
The Logarithmic Scale 41
Logarithmic Transformation of Ratios 43
The Natural Logarithm 44
The Usefulness of Logarithms 45
CHAPTER 3 ROUNDING AND THE SIGNIFICANCE OF FIGURES 52
Simple Rounding 53
Figure Significance 54
Significant Figures in the Results of Calculations 57
Significant Figures in Exponential Expressions and Logarithms 60
Absolute and Relative Uncertainty 62
Rounding Error 62
Keeping Figure Significance in Perspective 63
CHAPTER 4 SYSTEMS OF MEASUREMENT 68
United States Customary System of Units 69
The Metric System 69
International System of Units 73
Equivalencies Between Systems 73
The Mole 74
Dimensional Analysis 75
The Ratio Method 77
Temperature Scales 77
CHAPTER 5 SOLUTIONS AND CONCENTRATIONS 80
Expressing Concentration 81
Specific Gravity 84
The pH Scale 85
Converting Between Units 87
CHAPTER 6 DILUTIONS 93
Simple Dilutions 93
Serial Dilutions 96
CHAPTER 7 PROPORTIONALITY, GRAPHS, AND RATES OF CHANGE 102
Proportionality 103
Straight Lines 103
Standard Curves 110
Nonlinear Graphs 112
Online Appendix
Forms of the Equation of a Line
CHAPTER 8 STATISTICS 118
The Central Tendency 119
Dispersion 121
The Normal Distribution 123
Regression 125
Judging Goodness-of-Fit 129
Correlation 132
Coefficient of Determination 134
Significance Testing 135
Online Appendices
Degrees of FreedomThe Reasoning Behind Linear RegressionClassical and Inverse Calibrations
Data WeightingHow the Range of x Values Affects Uncertainty in a Regression LineThe Reasoning Behind the Coefficients of Correlation and DeterminationArithmetic Means, Geometric Means, and Log-Normal Distributions
CHAPTER 9 CHEMISTRY 153
Analytical Spectroscopy 154
Enzyme Kinetics 157
pH Buffering 164
Acid-Base Disorders 168
Anion Gap 169
Osmolarity and Osmolality 170
Osmolality Gap/Osmolarity Gap 171
Lipid Calculations 172
Creatinine Clearance 173
Online Appendices
Elementary Chemical Kinetics
Models of Enzyme Catalysis
An Example of the Physiological Significance of K_{M}
Linear Transformations of the Michaelis-Menten Equation
Sample Calculation of an Acetic Acid / Acetate Buffer
The Bicarbonate Buffer System of Blood
The Formula for Calculating Plasma Osmolarity
Making Sense of the Equation for Creatinine Clearance
CHAPTER 10 HEMATOLOGY 180
Manual Cell Enumeration 181
Hematocrit 183
Erythrocyte Indices 183
Rule of Three 184
Red-Cell Distribution Width 184
Reticulocyte Production Index 185
Enumerating Reticulocytes 186
Osmotic Fragility 187
International Normalized Ratio 188
Correction of WBC Count for Nucleated RBCs 189
Online Appendix
International Sensitivity Index (ISI)
CHAPTER 11 QUALITY CONTROL 194
Levey-Jennings Charts 195
Westgard Multirules 197
Multirules for Three Controls 200
Resolution of Out-of-Range Controls 201
Rationale Behind the Rules 201
Random and Systematic Error 202
CHAPTER 12 METHOD EVALUATION 208
Diagnostic Value 209
Quality Assurance for Methods and Instruments 214
Determining Reportable Range 217
Determining Reference Ranges 218
Online Appendices
ROC Curves and Likelihood Ratios
Polynomials and the Polynomial Method for Evaluating Nonlinearity
Capturing the Curves in Linearity Testing
Frequently Asked Questions and Common Misunderstandings 223
Online Advanced Topics
Equilibrium Constants
Effect Size
Ion Product of Water
Activity as Opposed to Concentration
Estimation of Glomerular Filtration Rate by Means of Exogenous Tracers
Answer Key 233
Glossary 292
Index 299

Foreword

Clinical Laboratory Mathematics is part of Pearson's Clinical Laboratory Science series of textbooks, which is designed to balance theory and practical applications in a way that is engaging and useful to students. The author of Clinical Laboratory Mathematics presents highly detailed technical information and effective tools that will help beginning learners envision themselves as members of a healthcare team, while helping advanced learners and practitioners continue their education. The synergy of theoretical and practical information in this text enables learners to analyze data and synthesize conclusions. Additional applications and instructional resources are available at www.myhealthprofessionskit.com.

We hope that this book, as well as the entire series, proves to be a valuable educational resource.

Elizabeth A. Gockel-Blessing (formerly Zeibig), PhD, MLS(ASCP) ${ }^{\text {CM }}$
Clinical Laboratory Science Series Editor, Pearson Health Science
Interim Associate Dean for Student and Academic Affairs, Department of Clinical Laboratory Science, Doisy College of Health Sciences, Saint Louis University

Preface

Clinical Laboratory Mathematics is a comprehensive textbook on the mathematical techniques and theories of clinical laboratory science. It is written for students at any point on the trajectory toward an undergraduate or graduate degree in the discipline, from an associate's degree to a doctorate. Students and practitioners of related disciplines will also find the book useful: pathologists, medical students, nurses, pharmacists, biochemists, biomedical engineers, and physician assistants.

Going well beyond the notion of "relevance," this book tries to convey the conviction that learning mathematics is not only helpful, but often critical, in the high-technology milieu of a clinical laboratory. It repeatedly highlights the reasons for developing a battery of mathematical tools: (1) to handle unfamiliar mathematical problems that arise in the course of laboratory work; (2) to follow the reasoning in seminars, papers, and discussions; (3) to detect mathematical errors made by individuals; (4) to recognize instrument malfunctions or method anomalies through mathematical irregularities; (5) to adapt new methods, ideas, and technologies that require some mathematical competence; and (6) to shift smoothly into researchoriented work, whether in the form of short-term projects in a routine laboratory, long-term projects in a research laboratory, or method development at a diagnostics company.

Therefore, the book integrates real-world examples of mathematical tools at work in the clinical laboratory. To achieve this goal, practice problems are strategically designed to have the student confront scenarios involving mathematical questions that have both context and consequence. Such problems offer the student a chance to think under the circumstances that a laboratory professional might encounter on the job, requiring him or her to solve a mathematical problem while coming to appreciate the importance of correct calculation and the repercussions of error.

The book supports both self-guided study and the more traditional lecture-discussion format. Meeting the needs of either approach, or of any approach in-between, is a matter not only of organizing the topics logically, but also of liberally cross-referencing so that students see connections and common motifs. This technique promotes comprehension while lessening the burden of brute memorization.

The book includes online resources (www.myhealthprofessionskit.com) intended to meet the needs of advanced users: (1) chapter appendices, which elaborate topics introduced in the main text, and (2) advanced topics, which emerge from frequently asked questions and from the main text.

Because some instructors start their courses with a review of arithmetic, and because some students seek such a review, the first chapter deals with addition, subtraction, multiplication, division, fractions, decimals, percentages, algebra, and ratios. Furthermore, it includes strategies for speeding up calculations without relying on electronics. Subsequent chapters cover increasingly complex and specialized topics, with the online appendices carrying those topics to the greatest depth.

Reviewers

James E. Daly, MEd, MT(ASCP)
Lorain County Community College Elyria, Ohio

Amy Gatautis, MBA, MT(ASCP)SC
Cuyahoga Community College
Cleveland, Ohio
Amy Kapanka, MS, MT(ASCP)SC
Hawkeye Community College
Cedar Falls, Iowa
Pamela Lonergan MS, MT(ASCP)SC
Norfolk State University
Norfolk, Virginia
Leslie Lovett, MS, MT(ASCP)
Pierpont Community and Technical College
Fairmont, West Virginia
Stephen Olufemi Sodeke, PhD, MA
Tuskegee University
Tuskegee, Alabama

Kathleen Paff, MA, MT(ASCP)
Kellogg Community College
Battle Creek, Michigan
Travis M. Price, MS, MT(ASCP)
Weber State University
Ogden, Utah
Susan Schoffman, MPH, MT(ASCP), CLS(NCA)
Tulsa Community College
Tulsa, Oklahoma
Dick Y. Teshima, MPH, MT(ASCP)
University of Hawaii at Manoa
Honolulu, Hawaii
Darius Y. Wilson, EdD
Southwest Tennessee Community College
Memphis, Tennessee
Patricia Wright, MT(ASCP)
Southeastern Community College
Whiteville, North Carolina

This page intentionally left blank

Arithmetic and Algebra

Learning Objectives

At the end of this chapter, the student should be able to do the following:

1. To add, subtract, multiply, and divide positive and negative numbers
2. To multiply, divide, and reduce fractions
3. To add and subtract fractions
4. To express fractions as decimal numbers and to express improper fractions as mixed numbers
5. To simplify complex fractions
6. To interconvert percentages, decimal numbers, and fractions
7. To calculate a specified percentage of a number
8. To express change properly as a percentage
9. To solve an equation algebraically for an unknown variable
10. To calculate and interpret ratios
11. To solve equations of two ratios for an unknown variable by cross-multiplication

Key Terms

associative property
canceling
commutative property
complex fraction
denominator
difference
distributive property
factor
improper fraction
least common denominator
mixed number
numerator
opposite
percentage
product
proper fraction
quotient
ratio
reciprocal
reducing
sum

Chapter Outline

Key Terms 1
Addition 2

Subtraction 3

Multiplication 4
Division 5
Fractions 6
Percentages 12
Algebra 15
Ratios 20

Arithmetic is the manipulation of numbers through addition, subtraction, multiplication, and division. Algebra is the strategic manipulation of relationships in order to find the unknown value of a certain quantity. In medical decisions, the importance of having reliable information is self-evident. Therefore, mastering the basic skills of arithmetic and algebra is critical to ensuring the accuracy of every result that leaves the laboratory.

ADDITION

In the problem

$$
a+b=c
$$

variable c is referred to as the sum of a and b.
In the operation of addition, positive numbers represent a "putting in" and negative numbers a "taking out." Therefore, we regard a positive number and its negative counterpart as opposites. For example, the opposite of " 7 " is " -7 ," and the opposite of " -200 " is " 200 ." Consequently, combining a positive number with a negative number amounts to a decrease. For example,

$$
5+(-3)=2
$$

A simple way to approach a problem like this is to refer to a number line. Adding a negative number is the same as moving leftward. In this case, we start at the " 5 " and then move to the left by " 3 ," which brings us to "2."

Adding a negative number to a negative number follows the same rule, that is, a leftward movement:

To clarify this procedure with an analogy, envision a beaker of water on a tabletop. Let the number " 1 " be a unit of heat and the number " -1 " be a unit of cold. Adding a positive number to another positive number puts units of heat into the water, causing the temperature to rise. Adding a negative number to a positive number, however, introduces units of cold to the water, bringing the temperature down.

Addition is commutative. In other words, the order in which we add two numbers together does not affect the sum. Thus, this equation shows the commutative property of addition, that is, adding a and b gives the same result as adding b and a :

$$
a+b=b+a
$$

For example,

$$
3+6=6+3=9
$$

and

$$
-0.721+0.0044=0.0044+(-0.721)
$$

The grouping of numbers in addition also does not affect the sum. This fact reflects the associative property of addition, meaning the sum of a and b plus c is equal to a plus the sum of b and c, as represented in this equation:

$$
(a+b)+c=a+(b+c)
$$

For example,

$$
(2+8)+5=2+(8+5)=15
$$

and

$$
(-1+9)+3=-1+(9+3)=11
$$

マ CHECKPOINT 1-1

1. Evaluate the following expressions.
(a) $16+(-9)$
(b) $(-4)+10$
(c) $1.7+(-3.4)$
(d) $(-58)+(-4)$
2. Evaluate the following expressions.
(a) $(-9)+5+(-2)$
(b) $13.5+0.2+(-0.8)$
(c) $0.0556+(-0.0102)+0.0433$
(d) $(-128)+(-128)+256$
3. (a) 7
(b) 6
(c) -1.7
(d) -62
4. (a) -6
(b) 12.9
(c) 0.0887
(d) 0

SUBTRACTION

In the problem

$$
a-b=c
$$

variable c is referred to as the difference between a and b.
Subtracting a positive number from a positive number is intuitive:

$$
13-8=5
$$

In fact, we define subtraction as the addition of an opposite:

$$
a-b=a+(-b)
$$

Subtracting a negative number from a positive number, however, may seem counterintuitive:

$$
13-(-8)=21
$$

Here, we are subtracting the opposite of 8 from 13. If we were subtracting 8 itself, then we would bring the total down to 5 , that is, $13-8=5$. Instead, we are subtracting a "taking out," a process that amounts to a "putting in." Therefore, subtracting a negative number has the same effect as adding its opposite:

$$
13-(-8)=13+8=21
$$

Our beaker-of-water analogy might prove helpful here. We can say that subtracting a negative is the same as withdrawing units of cold from the water, the result of which is an increase in the temperature.

\checkmark CHECK POINT 1-2

Evaluate the following expressions.
(a) $10-(-2)$
(b) $(-3)-5$
(c) $40-46$
(d) $(-18)-(-30)$
(a) 12
(b) -8
(c) -6
(d) 12

MULTIPLICATION

In the problem

$$
a \times b=c
$$

variables a and b are called the factors, and variable c is referred to as the product of a and b.
Multiplication is a shortcut for addition:

$$
6 \times 4=24
$$

What this operation does is to add together six fours or four sixes:

$$
6 \times 4=4+4+4+4+4+4=6+6+6+6=24
$$

There are three common ways to symbolize multiplication:

$$
a \times b=a \cdot b=a b
$$

Like addition, multiplication is commutative. The order in which we multiply two numbers together does not affect the product:

$$
a \times b=b \times a
$$

For example,

$$
6 \times 5=5 \times 6=30
$$

The grouping of numbers in multiplication also does not affect the product. Thus, the associative property of multiplication is

$$
(a \times b) \times c=a \times(b \times c)
$$

For example,

$$
(3 \times 7) \times 2=3 \times(7 \times 2)=42
$$

As in addition and subtraction, multiplying two positive numbers together makes sense. Equally logical, though, is multiplying a positive number by a negative number:

$$
6 \times(-4)=-24
$$

What this operation does is to add together six negative fours or negative-six fours:

$$
\begin{gathered}
6 \times(-4)=(-4)+(-4)+(-4)+(-4)+(-4)+(-4)=-24 \\
(-6) \times 4=-24
\end{gathered}
$$

What does it mean to add together negative-six fours? Fortunately, our beaker-of-water analogy is useful here, too. Regard the operation not as an addition of negative-six fours but as a subtraction of six fours, giving -24 . In other words, we are subtracting four units of heat six times, for a total of 24 units of heat out of the water. The result is a lower temperature. Therefore, a negative times a positive is a negative.

Another way to approach this problem is to apply the commutative property of multiplication:

$$
(-6) \times 4=4 \times(-6)=-24
$$

Written as such, the problem tells us simply to add together four negative sixes:

$$
4 \times(-6)=(-6)+(-6)+(-6)+(-6)=-24
$$

Finally, consider the multiplication of two negative numbers:

$$
(-6) \times(-4)=24
$$

To understand this, we can extend our analogy from above and treat the operation as a subtraction of six negative fours, giving 24. In other words, we are subtracting, or withdrawing, four units of cold six times, pushing the temperature $u p$. Therefore, a negative times a negative is a positive.

Table 1-1 \star summarizes the four possible sign combinations in multiplication.
TABLE 1-1 The Four Sign Combinations in Multiplication

Rule	Analogy
positive \times positive $=$ positive	Adding units of heat raises the temperature
positive \times negative $=$ negative	Adding units of cold lowers the temperature
negative \times positive $=$ negative	Subtracting units of heat lowers the temperature
negative \times negative $=$ positive	Subtracting units of cold raises the temperature

\square CHECKPOINT 1-3

Evaluate the following expressions.
(a) 4×9
(b) $2 \times(-6)$
(c) $(-10) \times 3$
(d) $(-5) \times(-4)$
(e) 1.5(2)
(f) $33 \cdot(-3)$
(g) $(-8)(-8)$
(h) $(-4.04) \cdot 2$
(a) 36
(b) -12
(c) -30
(d) 20
(e) 3
(f) -99
(g) 64
(h) -8.08

DIVISION

In the problem

$$
a \div b=c \quad \text { or } \quad \frac{a}{b}=c
$$

variable c is referred to as the quotient of a and b, that is, c is the result of dividing a by b.
We define division in terms of multiplication:

$$
a \div b=a \cdot \frac{1}{b} \quad \text { or } \quad \frac{a}{b}=a \cdot \frac{1}{b}
$$

The two quantities b and $1 / b$ are reciprocals of each other. Reciprocals are two numbers whose product is 1 :

$$
b \times \frac{1}{b}=1
$$

If $a \div b=c$, then $b \times c=a$. One important consequence of this relationship is a prohibition against dividing by zero. Division by zero is undefined because there are no values for a and c that satisfy this equation:

$$
\frac{a}{0}=c
$$

If a, for example, is 25 , then c does not exist, because there is no value for c that, when multiplied by zero, gives 25 :

$$
c \times 0 \neq 25
$$

Of course, zero divided by any number is zero because any nonzero value for b satisfies these equations:

$$
\frac{0}{b}=0 \quad \text { or } \quad b \times 0=0
$$

Because we define division in terms of multiplication, the sign rules are the same. Table 1-2 summarizes those rules.

TABLE 1-2 The Four Sign Combinations in Division

Rule
positive \div positive $=$ positive
positive \div negative $=$ negative
negative \div positive $=$ negative
negative \div negative $=$ positive

\checkmark CHECKPOINT 1-4

Evaluate the following expressions.
(a) $\frac{18}{-3}$
(b) $2.4 \div 0.3$
(c) $\frac{-160}{-4}$
(d) $(-49) \div 7$
(e) $5\left(\frac{1}{10}\right)$
(f) $\frac{0.54}{-9}$
(g) $-35\left(\frac{1}{7}\right)$
(h) $25 \div(-75)$
(a) -6
(b) 8
(c) 40
(d) -7
(e) 0.5
(f) -0.06
(g) -5
(h) -0.33

FRACTIONS

A fraction is nothing more than a representation of a division. The top number is the numerator and the bottom number is the denominator. The denominator specifies the number of equal parts into which we divide something, and the numerator specifies the number of those equal parts.

In the above diagram, for example, we divide the circle into four equal parts, and each part is one of the four. For each part, therefore, the denominator is 4 and the numerator is 1 .

As a division, the fraction " $1 / 4$ " tells us that (1) we divided one whole thing (a circle in this case) into four equal parts, and (2) we are considering one of those parts.

Multiplying Fractions

To multiply fractions, multiply the numerators and multiply the denominators. For example,

$$
\frac{2}{3} \times \frac{3}{4}=\frac{6}{12}
$$

What this equation tells us is that $2 / 3$ of $3 / 4$ is the same as $6 / 12$. Figure $1-1 \square$ depicts this relationship.

FIGURE 1-1 A depiction of the equation $\frac{2}{3} \times \frac{3}{4}=\frac{6}{12}$. Two-thirds of $3 / 4$ is the same as $6 / 12$. Panel A : Three-fourths of the circle is yellow. Panel B: This represents $2 / 3$ of $3 / 4: 2 / 3$ (in green) of the original $3 / 4$ (in green and in yellow). Panel C: Six-twelfths (in green) of the whole circle, which is the same as the green area in panel B.

Multiplying a fraction by a whole number is straightforward; just treat the whole number as a fraction with " 1 " in the denominator. For example,

$$
\frac{4}{5} \times 10=\frac{4}{5} \times \frac{10}{1}=\frac{40}{5}=8
$$

Dividing Fractions

To divide a fraction, multiply it by the reciprocal of the other number:

$$
\frac{2}{3} \div 3=\frac{2}{3} \times \frac{1}{3}=\frac{2}{9}
$$

What these equations tell us is that dividing $2 / 3$ of an object into three equal parts gives $2 / 9$ of that object. For example, consider a circle (Figure 1-2 ■).

FIGURE 1-2 A depiction of the equations $\frac{2}{3} \div 3=\frac{2}{3} \times \frac{1}{3}=\frac{2}{9}$. Two-thirds divided by 3 is the same as $1 / 3$ of $2 / 3$, which equals $2 / 9$. Panel A: Two-thirds of the circle is blue. Panel B: One-third (in purple) of the original $2 / 3$ (in purple and in blue). Panel C: Two-ninths (in purple) of the whole circle, which is the same as the purple area in panel B.

『CHECKPOINT 1-5

1. Evaluate the following expressions.
(a) $\frac{3}{5} \times \frac{4}{9}$
(b) $\frac{2}{7} \times \frac{1}{2}$
(c) $\frac{1}{4} \times \frac{2}{3}$
(d) $25 \times \frac{4}{5}$
2. Evaluate the following expressions.
(a) $\frac{8}{9} \div 2$
(b) $\frac{1}{2} \div \frac{3}{5}$
(c) $6 \div \frac{2}{3}$
(d) $\frac{3}{7} \div \frac{4}{7}$
3. (a) $\frac{12}{45}$
(b) $\frac{2}{14}$
(c) $\frac{2}{12}$
(d) $25 \times \frac{4}{5}=\frac{100}{5}=20$
4. (a) $\frac{8}{9} \div 2=\frac{8}{9} \times \frac{1}{2}=\frac{8}{18}$
(b) $\frac{5}{6}$
$\begin{array}{ll}\text { (c) } 9 & \text { (d) } \frac{21}{28}\end{array}$

Reducing Fractions

Generally, fractions should be reduced (or "simplified") so that the numerator and denominator are as small as possible, that is, until the only number evenly divisible into both of them is "1."

Sometimes the reduction is comparatively easy to see, as in the following example.

$$
\frac{2}{4} \text { reduces to } \frac{1}{2}
$$

In the fraction $\frac{2}{4}$, the " 2 " divides evenly into the " 4 "; therefore, the " 2 " reduces to a " 1 " and the " 4 " reduces to a"2."

Here is another simple example:

$$
\frac{5}{20} \text { reduces to } \frac{1}{4}
$$

The " 5 " divides evenly into the " 20 "; therefore, the " 5 " reduces to a " 1 " and the " 20 " reduces to a " 4 ."
In more complex reductions, it helps to write out the factors. Three examples follow.

$$
\begin{aligned}
& \frac{18}{32}=\frac{2}{2} \times \frac{9}{16}=1 \times \frac{9}{16}=\frac{9}{16} \\
& \frac{9}{15}=\frac{3}{3} \times \frac{3}{5}=1 \times \frac{3}{5}=\frac{3}{5} \\
& \frac{16}{64}=\frac{16}{16} \times \frac{1}{4}=1 \times \frac{1}{4}=\frac{1}{4}
\end{aligned}
$$

Canceling

We can simplify operations on fractions by the shortcut known as canceling, which exploits simple reductions. For example, consider this problem and its long solution:

$$
\frac{4}{5} \times \frac{15}{16}=\frac{4 \times 15}{5 \times 16}=\frac{15 \times 4}{5 \times 16}=\frac{15}{5} \times \frac{4}{16}=3 \times \frac{1}{4}=\frac{3}{4}
$$

Now consider the same problem simplified by canceling.

$$
\frac{4^{1}}{{ }_{1}^{5}} \times \frac{15^{3}}{4^{16}}=\frac{1 \times 3}{1 \times 4}=\frac{3}{4}
$$

The "4" in the numerator divides evenly into the " 16 " in the denominator; as a result, the " 4 " becomes a " 1 " and the " 16 " a " 4 ." We say that the " 4 " cancels out. Likewise, the " 5 " in the denominator divides evenly into the " 15 " in the numerator; accordingly, the " 5 " becomes a " 1 " and the " 15 " a " 3 ." We say that the " 5 " cancels out.

Here is another example:

$$
\frac{7^{1}}{{ }_{2}^{16}} \times \frac{8^{1}}{{ }_{3} 21}=\frac{1 \times 1}{2 \times 3}=\frac{1}{6}
$$

\square CHECKPOINT 1-6

Reduce the following fractions.
(a) $\frac{4}{6}$
(b) $\frac{16}{36}$
(c) $\frac{28}{56}$
(d) $\frac{9}{12}$
(e) $\frac{5}{20}$
(a) $\frac{2}{3}$
(b) $\frac{4}{9}$
(c) $\frac{1}{2}$
(d) $\frac{3}{4}$
(e) $\frac{1}{4}$

Adding and Subtracting Fractions

To add (or subtract) fractions, add (or subtract) the numerators but not the denominators. Furthermore, the denominators must all be the same.

Consider the simple addition of $1 / 4$ and $1 / 4$, which is highlighted in pink in the diagram below.

$$
\frac{1}{4}+\frac{1}{4}=\frac{2}{4}
$$

FIGURE 1-3 Adding fractions entails adding the numerators but not the denominators. Clearly, the proportion of $2 / 4$ (pink) is greater than the proportion of $2 / 8$ (orange). Therefore, $\frac{1}{4}+\frac{1}{4}=\frac{2}{4} \neq \frac{2}{8}$.

It is logical to add only the numerators together because we clearly have two-fourths of the circle. As Figure 1-3 \square shows, adding the denominators would be meaningless: it is impossible to arrive at two-eighths by adding together $1 / 4$ and $1 / 4$. Therefore, adding or subtracting fractions requires a common denominator.

If two denominators are different, we must equalize them before addition or subtraction. To accomplish this, we find the least common denominator, which is the single lowest number into which each denominator divides evenly. For example, in the problem

$$
\frac{2}{3}+\frac{1}{4}
$$

the least common denominator is " 12 ." To prove this, we construct a chart of multiples:

Multiples of 3:	3	6	9	12	15	18	21
Multiples of 4:	4	8	12	16	20	24	28

Therefore, the addition problem above becomes

$$
\frac{g}{12}+\frac{h}{12}
$$

The next step is to find the numerators g and h that correspond to the new denominator:

$$
\frac{2}{3}=\frac{g}{12} \quad \text { and } \quad \frac{1}{4}=\frac{h}{12}
$$

In the first equation (for numerator g), the original denominator of 3 was multiplied by 4 to give the least common denominator of 12 . Therefore, we also multiply the numerator by 4 :

$$
\frac{2}{3} \times \frac{4}{4}=\frac{8}{12}
$$

In the second equation (for numerator h), the original denominator of 4 was multiplied by 3 . Therefore, we also multiply the numerator by 3 :

$$
\frac{1}{4} \times \frac{3}{3}=\frac{3}{12}
$$

Now we may perform the addition:

$$
\frac{2}{3}+\frac{1}{4}=\frac{8}{12}+\frac{3}{12}=\frac{11}{12}
$$

